FONCTIONS: LIMITES ET CONTINUITÉ

Exercice 1. Ensembles de définition

Déterminer l'ensemble de définition de chacune des fonctions suivantes :

$$1. \ f: x \mapsto \sqrt{4 - x^2}$$

2.
$$g: x \mapsto \frac{1}{|x+2|-3|}$$

3.
$$h: x \mapsto \frac{1}{2\cos x - 1}$$

1. L'ensemble de définition de f est

$$\mathscr{D}_f = \{ x \in \mathbb{R} : \ 4 - x^2 \geqslant 0 \}$$

Le trinôme du second degré $4-x^2$ se factorise en (2+x)(2-x)=-(x+2)(x-2). Ayant 2 racines -2 et 2, il est du signe du coefficient dominant -1, i.e. négatif à l'extérieur de ces racines et du signe contraire, i.e. positif à l'intérieur de ces racines :

x	$-\infty$		-2		2		$+\infty$
$4 - x^2$		_	0	+	0	_	

On obtient finalement $\mathcal{D}_f = [-2, 2]$.

2. L'ensemble de définition de f est

$$\mathcal{D}_a = \{x \in \mathbb{R} : |x+2| - 3 \neq 0\}$$

Or on a

$$|x+2|-3=0 \iff |x-(-2)|=3 \iff \begin{vmatrix} x=-2+3 \\ \text{ou} \\ x=-2-3 \end{vmatrix} \xrightarrow{\text{ou}} x=1$$

On en déduit que $\mathcal{D}_g = \mathbb{R} \setminus \{-5, 1\}$.

3. L'ensemble de définition de h est

$$\mathcal{D}_h = \{ x \in \mathbb{R} : 2\cos x - 1 \neq 0 \}$$

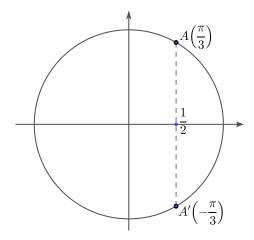
Puisque l'on a

$$2\cos x - 1 = 0 \iff \cos x = \frac{1}{2} \iff \cos x = \cos \frac{\pi}{3} \iff \begin{vmatrix} x = \frac{\pi}{3} + 2k\pi, & k \in \mathbb{Z} \\ & \text{ou} \\ x = -\frac{\pi}{3} + 2k'\pi, & k' \in \mathbb{Z} \end{vmatrix}.$$

on obtient alors

$$\mathscr{D}_h = \mathbb{R} \setminus \left(\bigcup_{k \in \mathbb{Z}} \left\{ \frac{\pi}{3} + 2k\pi \right\} \cup \bigcup_{k' \in \mathbb{Z}} \left\{ -\frac{\pi}{3} + 2k'\pi \right\} \right).$$

1



Exercice 2. Limites

Etudier les limites éventuelles en a des fonctions suivantes :

1.
$$a = 0$$
 $f: x \mapsto \frac{x^2 + |x|}{x}$

2.
$$a = 1$$
 $g: x \mapsto \frac{x^2 - 4x + 3}{x^2 - 1}$

$$3. \quad a = 0 \qquad h: x \mapsto \frac{\sin x}{x}$$

Etudier les limites éventuelles en
$$a$$
 des fonc
$$1. \quad a = 0 \qquad f: x \mapsto \frac{x^2 + |x|}{x}$$

$$2. \quad a = 1 \qquad g: x \mapsto \frac{x^2 - 4x + 3}{x^2 - 1}$$

$$3. \quad a = 0 \qquad h: x \mapsto \frac{\sin x}{x}$$

$$4. \quad a = 0 \qquad l: x \mapsto \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x}$$

$$5. \quad a = -\infty \qquad m: x \mapsto \frac{2x^3 - x + 4}{3x + 1}$$

5.
$$a = -\infty$$
 $m: x \mapsto \frac{2x^3 - x + 4}{3x + 1}$

1. Puisque
$$|x| = \begin{vmatrix} x & \text{si } x \geqslant 0 \\ -x & \text{si } x < 0 \end{vmatrix}$$
, on a

(a) Si
$$x > 0$$
, $f(x) = \frac{x^2 + x}{x} = x + 1$. Ainsi $\lim_{\substack{x \to 0 \ x \to 0}} f(x) = 1$.

(b) Si
$$x < 0$$
, $f(x) = \frac{x^2 - x}{x} = x - 1$. On a alors $\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = -1$.

Puisque $\lim_{\substack{> \\ x \to 0}} f(x) \neq \lim_{\substack{< \\ x \to 0}} f(x)$, f n'a pas de limite en 0.

2. Puisque
$$\lim_{x\to 1} (x^2 - 4x + 3) = 0$$
 et $\lim_{x\to 1} (x^2 - 1) = 0$, on est en présence d'une forme indéterminée du type $\frac{0}{0}$. Puisque 1 est racine de chacun des trinômes, ces derniers peuvent être factorisés par $x-1$. Le produit des racines du trinôme $x^2 - 4x + 3$ étant égal à $\frac{c}{a} = \frac{3}{1} = 3$, sa deuxième racine vaut 3 . On a ainsi $x^2 - 4x + 3 = (x-1)(x-3)$.

D'autre part, on a de manière évidente $x^2 - 1 = (x - 1)(x + 1)$. Par conséquent,

$$\forall x \in \mathbb{R} \setminus \{-1, 1\}, \ g(x) = \frac{(x-1)(x-3)}{(x-1)(x+1)} = \frac{x-3}{x+1}.$$

^{1.} On aurait tout aussi bien faire la division polynomiale de $X^2 - 4X + 3$ par X - 1.

On obtient alors, d'après la limite du quotient puisque $\lim_{x\to 1}(x+1)\neq 0$:

$$\lim_{x \to 1} g = \lim_{x \to 1} \frac{x - 3}{x + 1} = \frac{1 - 3}{1 + 1} = -1.$$

3. Pour tout réel x différent de 0, on peut écrire $h(x) = \frac{\sin x - \sin 0}{x - 0}$ qui n'est autre que la fonction taux d'accroissement $\tau_{\sin,0}$ de la fonction sinus en 0. Puisque sin est dérivable en 0, on a

$$\lim_{\substack{\neq \\ x \to 0}} \tau_{\sin,0}(x) = \lim_{\substack{\neq \\ x \to 0}} \frac{\sin x - \sin 0}{x - 0} = \sin'(0)$$

. Puisque $\sin' = \cos$, on en déduit que h a bien une limite en 0 qui est égale à $\sin'(0) = \cos 0 = 1$:

$$\lim_{\substack{\neq \\ x \to 0}} \frac{\sin x}{x} = 1.$$

Remarque : On peut prolonger la fonction h par continuité en 0. Le prolongement par continuité est la fonction

$$\hat{h}: \quad \mathbb{R} \quad \to \qquad \mathbb{R}$$

$$x \quad \mapsto \quad \begin{cases} h(x) & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$$

Remarque : On obtiendrait par un raisonnement analogue $\lim_{\substack{x \\ x \to 0}} \frac{e^x - 1}{x} = \exp'(0) = 1.$

4. Puisque $\lim_{x\to 0} \left(\sqrt{1+x}-\sqrt{1-x}\right) = \sqrt{1+0}-\sqrt{1-0} = 0$ et que $\lim_{x\to 0} x = 0$, on est en présence d'une forme indéterminée du type $\frac{0}{0}$. On est amené à transformer ce quotient en utilisant l'expression conjuguée :

$$\forall x \in [-1, 1] \setminus \{0\}, \ \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \frac{\left(\sqrt{1+x} - \sqrt{1-x}\right)\left(\sqrt{1+x} + \sqrt{1-x}\right)}{x\left(\sqrt{1+x} + \sqrt{1-x}\right)}$$

$$= \frac{\left(\sqrt{1+x}\right)^2 - \left(\sqrt{1-x}\right)^2}{x\left(\sqrt{1+x} - \sqrt{1-x}\right)}$$

$$= \frac{2x}{x\left(\sqrt{1+x} + \sqrt{1-x}\right)}$$

$$= \frac{2}{\left(\sqrt{1+x} + \sqrt{1-x}\right)}$$

Puisque $\lim_{x\to 0} \left(\sqrt{1+x}+\sqrt{1-x}\right) = \sqrt{1+0}+\sqrt{1-0} = 2$ où $2\neq 0$, d'après la limite du quotient de 2 fonctions, on obtient $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x} = \frac{2}{2} = 1$.

5. On est en présence d'une forme indéterminée du type $\frac{1}{\infty}$. Toutefois, la fonction m étant une fonction rationnelle (quotient de 2 fonctions polynômes), sa limite en $-\infty$ est égale à la limite du rapport de ses monômes dominants :

$$\lim_{x \to -\infty} \frac{2x^3 - x + 4}{3x + 1} = \lim_{x \to -\infty} \frac{2x^3}{3x} = \lim_{x \to -\infty} \frac{2x^2}{3} = +\infty.$$

3

Exercice 3. Image d'un intervalle par une application continue

Déterminer l'image de l'intervalle [-1,2] par l'application $f: x \mapsto e^{-x^2}$.

On a $f=\mathrm{e}^u$ où $u:x\mapsto -x^2$ est dérivable sur $\mathbb R$ de dérivée $u':x\mapsto -2x$; f est donc dérivable sur $\mathbb R$ de dérivée $f' = e^u \times u' : x \mapsto 2xe^{-x^2}$.

Puisque, pour tout réel x, on a $e^{-x^2} > 0$, le signe de f'(x) est le signe de -2x. Par conséquent,

$$f'(x) \geqslant 0 \iff x \in]-\infty, 0].$$

En appliquant le théorème de la bijection à la fonction f continue et strictement croissante sur l'intervalle [-1,0], on obtient $f([-1,0])=[f(-1),f(0)]=\left[rac{1}{e},1
ight]$. De manière analogue, on obtient, eu égard à la

continuité et à la stricte décroissance de f sur l'intervalle $[0,2]:f([0,2])=[f(2),f(0)]=\left|\frac{1}{e^4},1\right|$.

Puisque $f([-1,2]) = f([-1,0] \cup [0,2]) = f([-1,0]) \cup f([0,2])$ et que, de manière générale, on a

$$f(A \cup B) = f(A) \cup f(B)$$

on obtient $f([-1,2]) = \left[\frac{1}{e},1\right] \cup \left[\frac{1}{e^4},1\right]$. Puisque $\frac{1}{e^4} < \frac{1}{e}$, on obtient finalement $f([-1,2]) = \left[\frac{1}{e^4},1\right]$.

Exercice 4. Continuité en un point

Soit la fonction

 $f\colon \ \mathbb{R} \to \mathbb{R}$ $x \mapsto \begin{vmatrix} a^2x^2 & \text{si } x \leqslant 1 \\ a\sin\left(\frac{\pi}{2}x\right) & \text{si } x > 1 \end{vmatrix}$ où a est une constante réelle.

Existent-ils des valeurs de a pour lesquelles f soit continue en 1.

Pour que f soit continue en 1, il faut et il suffit que f ait en 1 une limite à gauche et une limite à droite (nécessairement égale à f(1)) et que ces limites coïncident.

Puisque l'on a $\lim_{1^-} f = \lim_{x \to 1^-} (a^2 x^2) = a^2$ et que $\lim_{1^+} f = \lim_{x \to 1^+} \left(a \sin\left(\frac{\pi}{2}x\right) \right) = a \sin\left(\frac{\pi}{2}\right) = 1$, f est continue en 1 si et seulement si $a^2 = a$, i.e. si et seulement si a(a-1) = 0 ou encore si et seulement si a = 0 ou a = 1.

Exercice 5. Continuité et limite de suites

Soit $f: \mathbb{R} \to \mathbb{R}$ une application continue en 0 telle que

$$\forall x \in \mathbb{R}, \ f(2x) = f(x).$$

Montrer que f est constante.

Soit un réel x; pour $y = \frac{x}{2}$, on a f(2y) = f(y) ou encore $f(x) = f\left(\frac{x}{2}\right)$; de manière analogue, on obtient $f\left(\frac{x}{2}\right) = f\left(\frac{x}{4}\right)$. Une récurrence simple permet alors d'obtenir

$$\forall n \in \mathbb{N}, \ f\left(\frac{x}{2^n}\right) = f(x).$$

Notons $(u_n)_{n\in\mathbb{N}}$ la suite de terme général $u_n=\frac{x}{2^n}$. On a $\lim_{n\to+\infty}\frac{1}{2^n}=\lim_{n\to+\infty}\left(\frac{1}{2}\right)^n=0$ (limite d'une suite géométrique de terme général de la forme q^n où $q = \frac{1}{2} \in]-1,1[)$.

Puisque $\lim_{n\to+\infty} u_n = 0$ et que f est continue en 0 $(\lim_{t\to 0} f(t) = f(0))$, on obtient

$$\lim_{n \to +\infty} f(u_n) = f\left(\lim_{n \to +\infty} u_n\right) = f(0).$$

Puisque $f(u_n) = f\left(\frac{x}{2^n}\right) = f(x)$, la suite de terme général $f(u_n)$ est constante de valeur f(x). Puisque $\lim_{n \to +\infty} f(u_n) = f(0)$, on obtient f(x) = f(0).

Comme ce raisonnement est valable pour tout réel x, la fonction f est bien constante de valeur f(0).

EXERCICE 6. Fonction trigonométrique

On considère la fonction $f: [0,\pi] \to \mathbb{R}$ $x \mapsto \cos x + \cos^2 x$

- 1. Dresser le tableau de variations de f.
- 2. Tracer alors la courbe représentative \mathscr{C} de f dans un repère orthonormé du plan.
- 1. La fonction f est dérivable sur $[0,\pi]$ comme somme de deux fonctions dérivables et l'on a

$$\forall x \in [0, \pi], f'(x) = -\sin x + 2\cos x \cos' x = -\sin x (1 + 2\cos x)$$

On étudie alors le signe de chaque facteur du produit :

$$\forall x \in]0, \pi[, -\sin x < 0]$$

et de plus, $\sin 0 = \sin \pi = 0$.

Soit $x \in [0, \pi]$, on a alors :

$$\begin{split} 1 + 2\cos x \geqslant 0 &\iff \cos x \geqslant \frac{-1}{2} \\ &\iff \cos x \geqslant \cos \frac{2\pi}{3} \\ &\iff x \leqslant \frac{2\pi}{3} \text{ car cos est strictement décroissante sur } [0,\pi] \end{split}$$

On dresse alors le tableau de signes de la dérivée :

x	0		$\frac{2\pi}{3}$		π
$-\sin x$	0	-		_	0
$1+2\cos x$		+	0	_	
f'(x)	0	_	0	+	0

On obtient alors le tableau de variations de f:

x	0		$\frac{2\pi}{3}$		π
f'(x)	0	_	0	+	Ó
f	2 _		$\frac{-1}{4}$		0

2. On obtient alors la courbe représentative ${\mathscr C}$ ci-dessous :

